Interactions between the conserved hydrophobic region of the prion protein and dodecylphosphocholine micelles.
نویسندگان
چکیده
The three-dimensional structure of PrP110-136, a peptide encompassing the conserved hydrophobic region of the human prion protein, has been determined at high resolution in dodecylphosphocholine micelles by NMR. The results support the conclusion that the (Ctm)PrP, a transmembrane form of the prion protein, adopts a different conformation than the reported structures of the normal prion protein determined in solution. Paramagnetic relaxation enhancement studies with gadolinium-diethylenetriaminepentaacetic acid indicated that the conserved hydrophobic region peptide is not inserted symmetrically in the micelle, thus suggesting the presence of a guanidium-phosphate ion pair involving the side chain of the terminal arginine and the detergent headgroup. Titration of dodecylphosphocholine into a solution of PrP110-136 revealed the presence of a surface-bound species. In addition, paramagnetic probes located the surface-bound peptide somewhere below the micelle-water interface when using the inserted helix as a positional reference. This localization of the unknown population would allow a similar ion pair interaction.
منابع مشابه
Dodecylphosphocholine Micelles Induce Amyloid Formation of the PrP(110-136) Peptide via an α-Helical Metastable Conformation
A peptide encompassing the conserved hydrophobic region and the first β-strand of the prion protein (PrP(110-136)) shown to interact with the surface of dodecylphosphocholine micelles adopts an α-helical conformation that is localized below the head-group layer. This surface-bound peptide has a half-life of one day, and readily initiates the formation of amyloid fibrils. The presence of the lat...
متن کاملPrion protein-detergent micelle interactions studied by NMR in solution.
Cellular prion proteins, PrP(C), carrying the amino acid substitutions P102L, P105L, or A117V, which confer increased susceptibility to human transmissible spongiform encephalopathies, are known to form structures that include transmembrane polypeptide segments. Herein, we investigated the interactions between dodecylphosphocholine micelles and the polypeptide fragments 90-231 of the recombinan...
متن کاملStructural insight into the transmembrane domain and the juxtamembrane region of the erythropoietin receptor in micelles.
Erythropoietin receptor (EpoR) dimerization is an important step in erythrocyte formation. Its transmembrane domain (TMD) and juxtamembrane (JM) region are essential for signal transduction across the membrane. A construct compassing residues S212-P259 and containing the TMD and JM region of the human EpoR was purified and reconstituted in detergent micelles. The solution structure of the const...
متن کاملA MODEL FOR THE BASIC HELIX- LOOPHELIX MOTIF AND ITS SEQUENCE SPECIFIC RECOGNITION OF DNA
A three dimensional model of the basic Helix-Loop-Helix motif and its sequence specific recognition of DNA is described. The basic-helix I is modeled as a continuous ?-helix because no ?-helix breaking residue is found between the basic region and the first helix. When the basic region of the two peptide monomers are aligned in the successive major groove of the cognate DNA, the hydrophobi...
متن کاملThe C-Terminal V5 Domain of Protein Kinase Cα Is Intrinsically Disordered, with Propensity to Associate with a Membrane Mimetic
The C-terminal V5 domain is one of the most variable domains in Protein Kinase C isoforms (PKCs). V5 confers isoform specificity on its parent enzyme through interactions with isoform-specific adaptor proteins and possibly through specific intra-molecular interactions with other PKC domains. The structural information about V5 domains in solution is sparse. The objective of this work was to det...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 287 3 شماره
صفحات -
تاریخ انتشار 2012